A course on image analysis of particles

Based on my experience at/with Sympatec GmbH (employing excerpts of Sympatec GmbH publications)
http://www.sympatec.com/EN/ImageAnalysis/ImageAnalysis.html

Particle size measurement of granules and important basic precautions to be taken
„Which measuring instrument does measure correctly?“

1. Sample character
2. Dispersion
3. Measuring principle
4. Evaluation
1. Sample character

★ Samples from dry processes have to be measured in a dry way. Dry dispersion that is not based on single particle detection is able to analyze even large sample sizes in short measuring time.

★ Samples from wet processes have to be measured in wet dispersion.

ISO 13320-1 : 1999(E)

“The minimum volume of sample, required for repeatable measurement, increases as the width of the size distribution becomes greater in order to allow a sufficient number of large particles to be present. Accordingly, the volume of the dispersion fluid required to suspend these samples also increases if the limits of optical concentration are to be observed.

For example, for a sample with particles in the approximate size range of 2 μm to 200 μm, a sample volume of at least 0.3 ml is needed. This will require at least 500 ml of suspension fluid for its dispersion. Also, the measurement time or the number of detector readings within one measurement should be sufficient to reach a reasonable precision. Appropriate measurement conditions should be established experimentally, in relation to the desired precision.”
2. Sampling

★ Representative cross section of the total

★ Statistical relevant size

For a representative sample and a good reliability of the statistical base, a large number of particles has to be selected in an applicable short time:

1 % precision requires 10,000 particles per size class

★ Split into representative test portions

★ Also the test portions have to be of statistical relevant size
3. Dispersing

- Complete but without communition / dissolving
- Stable at least during the measuring time, no recrystallisation / reagglomeration

Perfectly dispersed aerosols tend to reagglomerate during subsequent transport through hoses and cuvettes.

Dispersion based on surpressure often causes instability. As in case of using the surpressure of the extraction unit to provide the dispersing force, the pollution of the filter changes the available surpressure permanently.
4. Measuring principle (available methods)

<table>
<thead>
<tr>
<th>Method</th>
<th>Principle</th>
<th>Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieving</td>
<td>Passing through a mesh</td>
<td>Only smallest spherical diameter is detected, no shape information</td>
</tr>
<tr>
<td>Sedimentation</td>
<td>Separation by gravity</td>
<td>Flakes are „parachuting“ -> too small spherical diameter, no shape information</td>
</tr>
<tr>
<td>Centrifugation</td>
<td>Sep. by enforced gravity</td>
<td>Rotation start problems s. Sedimentation</td>
</tr>
<tr>
<td>Coulter-Counter</td>
<td>Electr. Field disturbance</td>
<td>Low concentration = limited statistics Small dynamic size range only</td>
</tr>
<tr>
<td>Time of flight</td>
<td>Light beam disturbance</td>
<td>Low concentration = limited statistics</td>
</tr>
<tr>
<td>Diffraction</td>
<td>Diffraction pattern</td>
<td>Equivalent spherical diameter only, no shape information</td>
</tr>
<tr>
<td>Ultrasonic extinction</td>
<td>Attenuation of ultrasonic frequencies</td>
<td>Only spherical diameter based on calibration, no shape information</td>
</tr>
<tr>
<td>Microscopy</td>
<td>Static image analysis</td>
<td>Low concentration = limited statistics Orientation -> Limited form information</td>
</tr>
<tr>
<td>Image Analysis</td>
<td>Dynamic image analysis</td>
<td>Depth of sharpness</td>
</tr>
</tbody>
</table>
4. Measuring principle

- Preferential based on basic physical principles

- No mix of methods, no hybrid instrument
 - pretended universality compromises accuracy

- Adequate dynamic measuring range
 - peripheral zones often are critical areas

- Statistical relevant numbers of measured effects
 - the charme of exact measured single particles looses qualification very fast if statistical relevance is missing.
5. Evaluation

★ Physical basic principles can always be evaluated without input or specification of model assumptions

.specification of mono or multiple modality is nothing but a cruch to enable evaluation by highly instable evaluation modes

★ Physical basic principles cannot be „calibrated“ just by using software without (wanted) backlash to results.

.Set up errors e.g. focal errors have to be corrected in the instrument, not by software

ISO 13320-1 : 1999(E) *

6.5.1 Calibration

„Laser diffraction systems are based on first principles, though with idealized properties of the particles (cf. Annex A) Thus, calibration in the strict sense is not required. However, it is still necessary and desirable to confirm the correct operation of the instrument by a validation procedure (see 6.5.2).“
Current State-of-the-Art of Particle Size and Shape Determination with High-Speed Dynamic Image Analysis in Laboratory and Process Environment
Introduction

What do we want?

State-of-the-Art Technology for:
Particle Size and Shape Analysis
results as close as possible to reality
analysis as fast as possible
for all kinds of disperse matters, i.e.
powders
suspensions
emulsions

What do we need?

1. representative amount of sample
2. complete, product adapted sample preparation, i.e. dispersion
3. dynamic Image Analysis Sensor
Solution

Measurement of statistically relevant Samples

Combination of Image Analysis Sensor with effective, product adapted Disperser

avoiding overlapping particles

no “software dispersion” requesting time consuming data manipulation

Analysis of very large particle numbers (>10⁶)

improving the statistical relevance of the results
to values with $\sigma_{\text{max}} < 1\%$ (comparable to laser diffraction)

Challenges

☆ Light source \rightarrow < 10 ns exposure time
(dry dispersion, e.g. with RODOS at 100 m/s)

☆ Camera \rightarrow acquisition of 10^4 to 10^5 images in less than a minute

☆ Optics \rightarrow imaging at *highest contrast* (reduced computing time)

☆ Evaluation \rightarrow fast processing of *GigaByte of data*
Set-up

- **pulsed light source**
 - pulse duration: < 1 ns
 - energy: ≈ 0.15 nJ / pulse
 - colour: visible (≈ 532 nm)
 - pulse rate: 0 - 500 Hz, selectable

- **beam expansion unit**
 - 35 mm Ø, 16 mm Ø, 7mm Ø

- **objectives**
 - (up to 6 on a carousel)
 - 2:1, 1:1, 1:2, …

- **camera**
 - CMOS, 1024 x 1204 Pixel,
 - 10 µm x 10 µm Pixel
 - up to 500 fps
Dry Dispersion: QICPIC & RODOS

for fine dry particles
QICPIC & RODOS: Operation

Measurement with QICPIC and Dry Disperser RODOS

1. **filling** of sample into hopper of the feeder
2. **constant feeding** into funnel of RODOS dry powder disperser
3. **imaging** of particles dispersed in aerosol cloud with 500 flashes/s of 1ns duration
4. **life display** of imaged particles on monitor
QICPIC & GRADIS

Gravity Disperser for coarse dry particles
Investigation of Slow Particles: 3D shape

- due to QICPIC’s high frame rate of 500 fps, slowly moving particles are imaging more than once
- this feature can be used to study the 3D shape of particles under different orientations

Sample: SiC–P16, measured at 500 fps

QICPIC & gravity disperser GRADIS

2 cm
Wet Dispersion

Wet Dispersion

RFID for detection of the type of the flow cell (0.2, 0.5, 1, 2, 4 mm)

auto-focus unit
Dry and wet dispersion with QICPIC & OASIS
The Optical Set-up

- a *background illumination* with *parallel light* is used in combination with an objective with *aperture stop*

- the aperture stop eliminates
 - *stray light*
 - *deflected light*
 - *diffracted light* scattered to large angles
Application with transparent particles

- All particles are images in black colour, as deflected light cannot reach the camera.
- The centre is illuminated, as the light beams here propagate nearly parallel to the optical axis.
- Highly transparent particles can be acquired at high contrast.

Feret diameter for particles with "hole"
Variety of shapes, how to describe?
Diameter Definitions (1)

★ Diameters Derived from the Equivalent Circle

Diameter of a Circle of Equal Projection Area (EQPC)
This is the diameter of a circle that has the same area as the projection area of the particle.

Diameter of a Circle of Equal Perimeter (PED)
This is the diameter of a circle that has the same perimeter as the particle image.
Diameter Definitions (2)

★ Feret Diameter

This is not a diameter in its actual sense but the common basis of a group of diameters derived from the distance of two tangents to the contour of the particle in a well defined orientation. In simpler words, the method corresponds to the measurement by a slide gauge (slide gauge principle).
Diameter Definitions (3)

Feret Diameter, Maximum (FERET_MAX)
Maximal Feret diameter after consideration of all possible orientations (0°...180°). Internally, the Feret diameters for as many angles as possible are calculated, and their maximum is selected. If a particle has an irregular shape, the Feret diameter usually varies much more than with regularly shaped particles. The maximum can therefore be significantly larger than the diameter of the equivalent circle.

Feret Diameter, Minimum (FERET_MIN)
Minimal Feret diameter after consideration of all possible orientations (0°...180°). Internally, the Feret diameters for a sufficient number of angles are calculated, and their minimum is selected. If a particle has an irregular shape, the Feret diameter usually varies much more than with regularly shaped particles. The minimum can therefore be significantly smaller than the diameter of the equivalent circle.

Feret Diameter, Mean Value (FERET_MEAN)
Mean value of the Feret diameters over all orientations according to the principle described above.
Diameter Definitions (4)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feret Diameter, 90° to the Maximal Feret Diameter (FERET_MAX90)</td>
<td>First, the maximal Feret diameter, FERET_MAX, is calculated. The result is the Feret diameter measured at an angle of 90 degrees to that of the maximal Feret diameter.</td>
</tr>
<tr>
<td>Feret Diameter, 90° to the Minimal Feret Diameter (FERET_MIN90)</td>
<td>First, the minimal Feret diameter, FERET_MIN, is calculated. The result is the Feret diameter measured at an angle of 90 degrees to that of the minimal Feret diameter.</td>
</tr>
</tbody>
</table>
Diameter Definitions (5)

Minimum Area Bounding Rectangle
The calculation of the smallest encasing rectangle is based on the Feret diameter. The value is calculated as the minimum of the product of every possible pair of \(x_{\text{Feret}}, x_{\text{Feret,90}} \).

Minimum Area Bounding Rectangle, Length (BR_MAX)
The larger dimension of the smallest encasing rectangle is output.

Minimum Area Bounding Rectangle, Width (BR_MIN)
The smaller dimension of the smallest encasing rectangle is output. This dimension corresponds quite well to the results of a sieve analysis.
Diameter Definitions (6)

★ Chord Length

This is not an diameter in its actual sense but the common basis of a group of diameters. A chord length is defined by the distance of two points of the contour, measured exactly across the centre of gravity of the projection area. This is why all methods of evaluating the chord length imply an evaluation of the centre of gravity of the projection area.

Warning: Chord length methods are problematic with strongly concave contours of a particle.

Example:
\[x_{cv} = \text{Chord length vertical} \]
\[x_{ch} = \text{Chord length horizontal} \]
Diameter Definitions (7)

Chord Length, Vertical (CHORD_VERTICAL)
The result is the chord length measured vertically across the centre of the projection area.

Chord Length, Horizontal (CHORD_HORIZONTAL)
The result is the chord length measured horizontally across the centre of the projection area.

Chord Length, Maximal (CHORD_MAX)
The result is the largest chord length measured across the centre of the projection area.

Chord Length, Minimal (CHORD_MIN)
The result is the smallest chord length measured across the centre of the projection area.

Chord Length, 90° to the Maximalen Chord Length (CHORD_MAX90)
First, the maximal chord length is calculated. The result is the chord length at an angle of 90 degrees to that of the maximal chord length.

Chord Length, 90° to the Minimalen Chord Length (CHORD_MIN90)
First, the minimal chord length is calculated. The result is the chord length at an angle of 90 degrees to that of the minimal chord length.

Chord Length, Mean Value (CHORD_MEAN)
First, chord length values for a sufficient number of orientations are calculated. Their mean value is output.
★ Martin Diameter

This is not an diameter in its actual sense but the common basis of a group of diameters.
The Martin diameter, x_M, is that chord dividing the projection area of the particle into two equal halves.

Warning:
The Martin diameter is problematic if a particle has many concave parts of the contour and should be avoided in such cases.
Diameter Definitions (9)

Martin Diameter, Maximal (MARTIN_MAX)
This is the maximal Martin diameter after consideration of all possible orientations (0°...180°). Internally, the Martin diameters of all possible orientations are calculated, and their maximum is output.

Martin Diameter, Minimal (MARTIN_MIN)
This is the minimal Martin diameter after consideration of all possible orientations (0°...180°). Internally, the Martin diameters of all possible orientations are calculated, and their minimum is output.

Martin Diameter, Mean Value (MARTIN_MEAN)
This is the mean value of the Martin diameters of all possible orientations according to the principle described above.
Shape Factor Definitions (1)

 ★ Shape Factor Derived from the Equivalent Circle

Sphericity (SPHERICITY)

The sphericity, S, is the ratio of the perimeter of the equivalent circle, P_{EQPC}, to the real perimeter, P_{real}.

The sphericity is defined by the formula below:

$$ S = \frac{P_{EQPC}}{P_{real}} = \frac{2\sqrt{\pi \cdot A}}{P_{real}} $$

The result is a value between 0 and 1. The smaller the value, the more irregular is the shape of the particle. This results from the fact that an irregular shape causes an increase of the perimeter. The ratio is always based on the perimeter of the equivalent circle because this is the smallest possible perimeter with a given projection area.
★ Shape Factor Derived from the Feret Diameter

Aspect Ratio
The ratio of the minimal to the maximal Feret diameter is another measure for the particle shape.

★ Other Shape Parameters

Convexity
The convexity is an important shape parameter describing the compactness of a particle. The figure below shows a particle with projection area A (grey/light) leaving open a concave region of area B (red/dark) on its right hand side.

The WINDOX software calculates the convex hull of the particle projection. The convexity is the ratio of the projection area itself (A) and the area of the convex hull ($A+B$).

The maximum theoretical convexity is 1, if there are no concave regions. Due to the detector design (square pixels), however, all particles seem to have small concave regions, corresponding to the tiny steps with every pixel in the perimeter line. Therefore, the maximum convexity calculated in reality is mostly limited to 0.99.

The convexity is defined as follows:

$$\psi_c = \frac{A}{A+B} = 1 - \frac{B}{A+B}$$
Characterisation of Fibres

Example: wood shavings

- the fibres are *not free flowing*

- using *RODOS* dry disperser

- a manual *pre-dispersion* of the sample is required

- a V-shaped chute is recommended to *smoothen* the feed

![Image of vibratory dosing unit VIBRI](image)

Manually pre-dispersed fibres

Inlet funnel of the dry disperser, RODOS/L
Result: Dispersion of Fibres (wood shavings)

- because of use of **effective disperser**
 - **overlapping fibres** are **avoided** as much as possible
 - **high numbers of particles per image** are obtained
 - well **de-agglomerated, diluted fields of fibres** are generated

20 mm = 1024 pixel

20 mm
Evaluation of Fibres

1. skeletonisation (erosion)
 Ahmed & Ward

2. search for all crossings, endpoints ...

3. conversion of the fibre skeleton to a graph
 (Dijkstra algorithms)

4. graph theory can be used, e.g. to detect the **longest path between all endpoints**

 LeFi is **the shortest connection** between the **most distant endpoints**

 DiFi yields from total projected area **divided** by the sum of the length of all segments d_i
Size Definitions for Fibre-Shaped Particles (1)

Length of Fibre (LEFI)
The length of a fibre is defined as the direct connection between its opposite ends, this is the longest direct path from one end to another within the particle contour. (Direct means without loops or deviations.)

Diameter of Fibre (DIFI and DIFIX)
One could imagine a number of ways to describe the diameter of a fibre by one mean value. The method implemented in WINDOX is to divide the projection area by the sum of all lengths of the branches of the fibre. The calculation of DIFI is applied to those fibres only that are completely within the image frame, whereas the calculation of DIFIX also includes fibres touching the edge of the image.
Size Definitions for Fibre-Shaped Particles (2)

Volume Based Fibre Diameter (VBFD)
This diameter is defined as the diameter of a sphere which has the same volume as the respective fibre. It is calculated by:

\[x_{VBFD} = \sqrt[3]{\frac{3}{2} x_D^2 \cdot x_L} \]

with \(x_D \), the fibre diameter (DIFI) and \(x_L \), the fibre length (LEFI).

The volume based fibre diameter is very useful if sample material consists of a mixture of granulate and fibres, and a distribution diagram of volume over particle size is desired. Neither LEFI nor DIFI can be used appropriately for the x-axis of a volume distribution diagram but VBFD contributes to an informative representation.
Straightness of Fibre Shaped Particles

Most fibres, especially longer ones, tend to curl, and there have been several efforts to describe this phenomenon in terms of a single parameter. One of the possible definitions is the straightness, proposed for the coming ISO standard 9276-6:

$$\text{STRAIGHT} = \frac{\text{FERET_MAX}}{\text{LEFI}}$$

A value of 1 of the straightness represents a perfectly straight particle while values close to zero represent a greater deformation (curled fibres).

Curl Index

In earlier Versions of the WINDOX software, the Curl Index was used:

$$\text{CURL_INDEX} = \frac{\text{LEFI}}{\text{FERET_MAX}} - 1$$

which reflected the tradition in some industries, mainly the wood processing industry.

Elongation

This is the ratio of diameter and length of a fibre as defined by the formula,

$$\frac{\text{DIFI}}{\text{LEFI}}$$

This parameter is also called eccentricity.
Particle Gallery of Wood Fibres

Individual shape information via filter conditions, e.g.

- $100 \mu m \leq LeFi \leq 1000 \mu m$ and Straightness (curl-Index) ≥ 0.2
- *back-traceability* to the original image
Results of Wood Fibres

Various evaluation modes are possible:

- EQPC
- LeFi
- DiFi
- Feret$_{\text{max}}$
- straightness, etc.

![Graph showing particle size distribution](chart.png)
Systems with dry dispersion

PICTOS
QICPIC & RODOS
beam expansion unit
dry disperser
dosing unit
optics & camera
PICTIS
QICPIC & GRADIS
Statistical Relevance: Number of Particles

possible number of particles per measurement > 10^8

$n_6 \approx 1.26 \cdot 10^4$

$\sigma_{Q3,\text{max}} = 6.8\%$

Sample: coffee powder
75 mg

$n_6 \approx 1.27 \cdot 10^8$

$\sigma_{Q3,\text{max}} = 0.65\%$

$n_6 \approx 1.27 \cdot 10^8$

$\sigma_{Q3,\text{max}} = 0.085\%$
Statistics on Shape Parameters

Number of particles per measurement raised to > 10^8

What happens to the shape parameters, e.g. the aspect ratio?

Sample: coffee powder
75 mg
Conclusion

Since its introduction, QICPIC, the combination of product adapted, powerful RODOS dispersion and high speed Image Analysis has become a unique tool in laboratory and process for dry and wet applications.

Main Benefits

- for dry and wet products
- size range 1 micron to 20 mm
- time of analysis for > 1 million particles in less than 1 minute
- sample size of > 100 million particles (up to about 1 kg) per measurement
 - time of analysis & statistical relevance of results is comparable to well established Laser Diffraction
- various size and shape parameters available, including the characterisation of fibres
 - all results are traceable down to the single particle
- the method is traceable to the standard metre

QICPIC has opened new fields of applications in psa at highest precision.
References

★ WITT, W., KÖHLER, U. and LIST, J., (2004), Direct Imaging of very fast Particles Opens the Application of Powerful (Dry) Dispersion for Size and Shape Characterisation, PARTEC 2004, Nuremberg, Germany

★ WITT, W., KÖHLER, U. and LIST, J., (2005), Experiences with Dry Dispersion and High-Speed Image Analysis for Size and Shape Characterisation, Particulate Systems Analysis, Stratford-upon-Avon, UK

★ WITT, W., ALTROGGE, D. and RUTSCH, O., (2006), High Speed Image Analysis and Dispersion for Size and Shape Characterisation on Fibres, 5th World Congress of Particle Technology, Orlando, FL, USA

★ WITT, W., KÖHLER, U. and LIST, J., (2007), Current Limits of Particle Size and Shape Analysis with High Speed Image Analysis, PARTEC 2007, Nuremberg, Germany